
ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 4, Issue 4, DOI: 10.29027/IJIRASE.v4.i4.2020.699-703, October 2020

 Vol. 4 (4), October 2020, www.ijirase.com 699

Incorporating OMA LWM2M for Firmware Update
Murkal Shambunath Shankar1, Dr. B.R.Shambhavi2

Department. of ISE, B.M.S College Of Engineering

Bengaluru, under VTU, Belagavi, India

Email: murkalshankar@gmail.com1, shambhavibr.ise@bmsce.ac.in2

Abstract— Internet of Things (IoT) makes the Internet available to billions of users. Managing large quantities of
devices is very critical. Among many other protocols, the global standards adopted Lightweight Machine 2
Machine(LWM2M) defines many traditional system management functions, such as remote device functions,
firmware and software updates, communication monitoring, and security. Accessible Mobile Alliance Light-weight
specification (OMA LwM2M) has given greater interoperability of applications to the absence of effort faced by the
heterogeneous design, fragmented evolution environment and the interface between established solutions. This paper

explains the firmware update architecture of LWM2M artefacts using standard OMA Specification. This involves
downloading firmware kit, upgrading settings, upgrading states, and taking action after firmware updates

Keywords— Device Management, firmware update, object, OMA LWM2M.

I. INTRODUCTION

The Internet of Things (IoT) is the latest phenomenon in
information technology and communications. It enables the
connection of millions of devices over various networks to
the Internet. Managing IoT / M2M devices is also a problem
not just because of the large number of devices, but also
because of their heterogeneity. The main aim is to enable
both people and enterprise to be more productive, efficient
and updated.

The Lightweight M2M (LWM2M) is an Open Mobile
Alliance (OMA) framework standard. The main aim to build
a well defined client-server quickly deployable to give
system services. OMA LwM2M is a brand latest version
developed specifically for devices with minimum memory,
processing, and battery life durabilities, such as sensors,
embedded devices, and wearables. These devices will be
trending types of IoT / Machine2Machine devices; a
significant IoT / M2M DM protocol will arise from the OMA
LWM2M. The LWM2M specification provides device
configuration APIs, connection monitoring/statistics,
protection, firmware update, server supply, and so on. The
commonly used CoAP (Constrained Application Protocol)
provides LWM2M with in-built binding and thus makes the
Internet of Things (IoT) especially attractive.

 For IoT applications, Lightweight M2 M provides a
range of core features, including secure bootstrapping,
exploration of resources and frameworks, efficient
management and application data transfer. The LWM2M
server performs all interactions (read, write, etc.) by the
specification, and where the client can start sending a
notification for selected resources.

The main purpose of our model is how to update the
firmware in LWM2M objects and see the responses on the
client and server-side and also it explains about the Object
definitions and Resource definitions with their operations
and responses and also their states of mechanism for a
firmware update.

This paper is divided into 6 sections. In the first section
will give a brief introduction to the work. In the second

section some Existing systems are studied. The third section
will be about the model approaches. Fourth section will brief
about performance steps with proposed system and in Fifth
section results are analyzed. Sixth section will conclude
about the proposed system. At the end some reference papers
are presented.

II. RELATED WORKS

 Z. Sheng et al[1] introduces an implementation of a low-
cost IoT gateway inside an embedded device that was used in
an IoT study of monitoring systems. It also addresses
protocols for converting various sensor data into a standard
format and provisioning methods that are supported by the
server. This specifies the use of CoAP instead of HTTP as a
communication protocol and offers multiprotocol gateway
architecture. Also addressed is the M2M architecture which
incorporates various other system management frameworks
and M2M network management issues, it also covers IP-
based network management protocols and ongoing self-
management research.

 Application management and remote control of IoT
devices between LWM2M client and server are being
addressed by S Datta and C Bonnet[2][3] where they
explained about updates in machine 2 machine in modules.

 A. Sehgal et.al[4] primarily describes a smart M2M
gateway-based architecture designed to handle vast volumes
of M2 M devices and incorporate the internal configuration
of the gateway and M2M application and endpoint
management APIs. They demonstrate a gateway in a smart
home scenario which manages connected devices.

 Wei-gang Chang and fuchun Joseph[5] resolved both
problems by developing an OMA LWM2M gateway
between OMA server and non-OMA LWM2M devices and
incorporating the gateway as standard architecture into the
ETSI M2M and oneM2M.

 Suhas Rao, Devaiah Chendanda, Chetan Deshpande[6]
discussed issues related to client-side design for LWM2M
and its full deployment system performed over IoT nodes
based on Contiki. They introduced Lightweight IoT protocol

 Vol. 4 (4), October 2020, www.ijirase.com 700

stack, integrating the architecture of the LWM2M client
machine with there interaction. And they have introduced
real-world applications to test their usability and their
effectiveness.

 Abdulkadir Karaagac, Matthias Van Eeghem, Rossey,
Bart Moons, Eli Poorter, Jeroen Hoebeke[7], suggest LwM2
M extensions to increase communications efficiency and add
intermittent connectivity to enhance Low-Power Wide Area
Network (LPWAN) support in LwM2M. For this purpose,
we are introducing two new object models, namely Notify
and Batch.

 The Notify Object allows reverse interaction models and
Ready-to-Receive (RTR) functionality to be developed,
enabling LwM2 M clients to send periodic resource updates
without requiring a request, and to notify LwM2 M servers
that they are ready to receive downlink messages and to keep
network connectivity open when downlink communication is
needed. Finally, the Batch object enables LwM2 M servers
to perform actions on multiple resources within a system by
using a single request.

 David Tracey [8] describes an architecture that uses a
tuple-space-based library for data flow from sensors to
applications with specified service abstractions. This also
contrasts the LWM2M Information Model for OMA and the
Standard Information Model for DMTF. It introduces a 'C'
implementation of the OMA LWM2M model on our
Contiki3.0 OS tuple space and takes into account the
efficiency of our architecture and its alignment with existing
CoAP and OMA LWM2M implementations.

III. MODEL APPROACHES

 This enabler characterizes the communication agreement
between an LwM2M server and LwM2M client in an
LwM2M system. The OMA Light-weight M2M empowering
agent for LwM2M Devices incorporates the executive’s
gadget and administration enabling. For this empowering
agent, the target LwM2M devices are fundamentally asset-
obliging gadgets.

 This authorizing agent, therefore, uses light and reduced
convention just as an effective model of asset knowledge.
For the LwM2M Enabler, a client-server configuration is
introduced, where the LwM2M interface operates as an
LwM2M Client, and the M2M administration, stage or
application operates as the LwM2M Server. There are two
parts on the LwM2M Enabler, LwM2M Server and LwM2M
Client.

 Between LwM2M Client and LwM2M Server sections
four interfaces are designed as shown as follows

 Bootstrapping

 Client Registration

 Device and service enablement

 Information Reporting

 Where Figure1 tells us, for communication between
Client and Server, LWM2M Enabler uses both the UDP
Constrained Application Protocol (CoAP) and the SMS
bonds between client and server. The Transport Layer
Security (DTLS) datagram gives User Datagram Protocol

transport layer more stability to interact with each other. The
protocol stack from the LwM2M Enabler is shown in
Figure2 which show their relation between transport and
messaging protocol.

Figure 1: Architecture of LwM2M Enabler

Figure 2: The protocol stack for LwM2M Enabler.

Table 1: List of objects defined in LWM2M

 0 Security

1 Server

2 Access Control

3 Device Information

4 Connectivity Monitoring

5 Firmware Version

6 Location Details

7 Connectivity Statistic

 Vol. 4 (4), October 2020, www.ijirase.com 701

IV. PROPOSED SYSTEM

Figure 3 displays a potential implementation of the UML 2.0

state diagram for the firmware update process. Where figure

consists of states where represented in rectangle and arrows

connecting each state to get firmware updated and each state

must be completed.

Figure 3: Firmware update mechanisms

The state diagram consists of four states namely:

STATE 0: Where State 0 is in an IDLE state as shown in the

figure and to start an event trigger must be done using

resource 0. The assertion of resource from 0 to 9 is

represented in this state wherefrom State-0 to State-1

package URI is written for the successful condition.

STATE 1: State-1 is in DOWNLOADING state when

State-1 gets URI from State-0 as shown in figure 3. The
assertion of resource from 0 to 9 is represented in this state.

When an event is successful than it shows as the download

finished for successful condition and for failed condition

notification goes from State-0 to State-1 as URI resolution

failed, download failed with their resource number.

STATE 2: State-2 is in the DOWNLOADED state when
State-2 gets downloaded message from State-1 as shown
in figure 3. The assertion of resource from 0 to 8 is
represented in this state. When an event is successful than
it initiates firmware update to State-3 in successful
condition and for failed condition notification goes from

State-2 to State-1 as an empty string is written to packet
resource their resource number.

STATE 3: State-3 is in UPDATING state when State-3
gets initiate firmware update message from State-2 as
shown in figure 3. The assertion of resource 0 is
represented in this state. When an event is successful than
it initiates firmware update is successful to State-1 in
successful condition and for failed condition notification
goes from State-3 to State-1 as firmware update failed
with their resource number.

 This LWM2M thing enables the control of the modified
firmware. This thing involves installing the firmware kit,
upgrading firmware, and executing behaviour after firmware
upgrading. The firmware update can allow the computer to
reboot and it depends on a variety of variables, such as the
configuration of the operating system and the frequency of
the software updates.

 By using DTLS security assurance LWM2M adaptation
1.0 will give access to LWM2M client to communicate with
LWM2M server with their latest structure of firmware
version. There are many devices which should be updated we
can update by adding their delta files using firmware over the
air to all devices. Models for such plan choices are how to
deal with the firmware version storehouse at the server side
(which may incorporate UI contemplations), the procedures
to give extra application layer security insurance of the
firmware picture, what several variants of firmware envision
to save on the device, and how to execute the firmware
update process considering the equipment which is suitable
for an IoT equipment item.

 The perspective is viewed as outside the extent of the
LWM2M form 1.0 determination. An LwM2M Server may
likewise teach an LwM2M Client to bring a firmware picture
from a committed server (rather than pushing firmware
envisions to the LwM2M Client). The Package URI asset is
contained in the Firmware protest and can be utilized for this
reason. An LwM2M Client MUST help square astute
exchange [CoAP Block wise] on the off chance that it
actualizes the Firmware version thing. An LwM2M Server
must help square astute exchange. Different conventions, for
example, HTTP/HTTPs, MAY likewise be utilized for
downloading firmware refreshes (using the Package URI
asset). For obliged gadgets, it is, in any case,
RECOMMENDED to utilize CoAP for firmware downloads
to maintain a strategic distance from the requirement for
extra convention executions.

Figure 4: Example of the object definition.

Object Definition: As shown in figure 4 proper Firmware
update name should be assigned and Object ID must be
declared with there Instances and Object URN for the
update.

Resource Definition: Following names should be defined
with there operations, type and range

 Vol. 4 (4), October 2020, www.ijirase.com 702

a. Package: Firmware package name should be
defined with the write operation.

b. Uniform Resource Identifier: Alternative Uniform
Resource Identifier firmware packet is used for
Read-Write operation for which system will access
single string 0-255bytes. After receiving the
Package URI the system will conduct the update at
the next practicable opportunity. RFC 3986
determines URI format. The protocol to be used is
determined by the URI scheme. This endpoint will
be an LwM2M Server for CoAP but does not
necessarily have to be. A CoAP server
implementing block-wise transfer is adequate as a
server hosting a firmware repository and it is
anticipated that this server can only act as a separate
firmware file server.

c. Update: Perform operation and software updates by
using the software delta file in the Package, or by
using the firmware downloaded from the Package
URI. This function can only be executed when the
state resource is downloaded.

d. State: Perform Read operation of Integer type
Specifies the latest state of this firmware update.
The LwM2M client sets this value.

1. Idle (before downloading, or after
updating successfully)

2. Download (The series of data is
underway)

3. Click here to download

4. Updating with new delta file if it is
successful.

If the device has downloaded the firmware
packages from the Package URI the Downloaded
state changes. Restores the Firmware Update
State Machine by writing an empty string to
Package Resource or Package URI Resource: the
State Resource value is set to Idle and the Update
Resource value is set to 0. When triggering the
executable Resource Update in Downloaded
State, the state will shift to Update. If delta file is
updated than state goes to idle with the new
version of firmware or else it goes back to state 2
were shown in figure3.

e. Update Result: Perform Read operation of type
Integer, Contains the result of a firmware
download or upgrade. The integer read operation
is done by LWM2M client. Where each of them
is explained from 1 to this happens when
uniform resources are unsupportive file, by
seeing those resource numbers we come to know
which type of error occurred and this can be
corrected

1. Initiation of the updating process.

2. The system successfully updated.

3. Lack of space for the new delta file.

4. RAM out of download state.

5. Missed connection during download
state.

6. Credibility checks failure of new kit
downloaded.

7. File not supported.

8. Permitted Uniform Resource.

9. New delta files not working.

10. Unassisted file.

f. Package name: Perform Read operation of type
String, Name of the Firmware Package.

g. Package Version: Performs String style read
process, Firmware module edition.

h. Firmware Update Protocol Support: LWM2M
client send firmware delta file which performs
Integer type read operation. The LwM2M server
uses this information to access which URI should
be included in the Package URI. An LWM2M
server does not include a uniform resource in the
Package URI object using a protocol that is not
accepted by the LWM2M client.

0 CoAP support block-wise transfer.

1
CoAP supports extra delta file

transmission.

2 HTTP1.1

3 HTTPS1.1

i. Firmware Update Delivery Method: The LwM2M

Client uses this tool to demonstrate so send

firmware delta packets to devices using push and

pull methods where this URI resource are shown in

the table

0 PULL

1 PUSH

2 BOTH PUSH and PULL

V. RESULTS AND ANALYSIS

Figure 5: Updated firmware.

 Vol. 4 (4), October 2020, www.ijirase.com 703

This section will describe the results obtained by using
proposed system based on the stages. If the stages are clear
then the firmware update is being done. Where we can see
in figure 5, client is registered with server to update with
new firmware version where delta file must be added to the
existing version. When delta file is added by passing
through each state from idle to updating we can see in
figure 5 where 2.01 is updated to 2.04.

VI. CONCLUSION

 In this paper, I explained detail about Firmware update

in LWM2M objects with their stages of object definition

and resource definition. Delta file is a combination of the

new file which are newly added, where this delta file must

be added to the old version to get new version this process

know as Firmware update. This process is successful when
we pass through each state form 0 to 3 and where we get

Integer resource number if any step had been failed so that

we can directly correct at that step by seeing error code. The

firmware update improves the performance and optimization

are being done. The firmware update makes it more

efficient, leading to increased performance and speed of IoT

modules.

REFERENCES

[1] Sheng, Z., Wang, H., Yin, C., Hu, X., Yang, S., &

Leung, V. C. (2015). Lightweight management of
resource-constrained sensor devices in internet of
things. IEEE internet of things journal, 2(5), 402-411.

[2] Datta, S. K., & Bonnet, C. (2015, April). A lightweight
framework for efficient M2M device management in
oneM2M architecture. In 2015 International
Conference on Recent Advances in Internet of Things
(RIoT) (pp. 1-6). IEEE.

[3] Datta, S. K., & Bonnet, C. (2014, September). Smart
m2m gateway based architecture for m2m device and
endpoint management. In 2014 IEEE International
Conference on Internet of Things (iThings), and IEEE
Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing
(CPSCom) (pp. 61-68). IEEE.

[4] Sehgal, A., Perelman, V., Kuryla, S., & Schonwalder, J.
(2012). Management of resource constrained devices in
the internet of things. IEEE Communications
Magazine, 50(12), 144-149.

[5] Chang, W. G., & Lin, F. J. (2016, October). Challenges
of incorporating OMA LWM2M gateway in M2M
standard architecture. In 2016 IEEE Conference on
Standards for Communications and Networking
(CSCN) (pp. 1-6). IEEE.

[6] Rao, S., Chendanda, D., Deshpande, C., & Lakkundi,
V. (2015, August). Implementing LWM2M in
constrained IoT devices. In 2015 IEEE Conference on
Wireless Sensors (ICWiSe) (pp. 52-57). IEEE.

[7] Karaagac, A., VanEeghem, M., Rossev, J., Moons, B.,
DePoorter, E., & Hoebeke, J. (2018, October).
Extensions to LwM2M for intermittent connectivity and
improved efficiency. In 2018 IEEE Conference on
Standards for Communications and Networking
(CSCN) (pp. 1-6). IEEE.

[8] Tracey, D., & Sreenan, C. (2017, May). OMA
LWM2M in a holistic architecture for the Internet of
Things. In 2017 IEEE 14th International Conference on
Networking, Sensing and Control (ICNSC) (pp. 198-
203). IEEE.

[9] Open Mobile Alliance (OMA), “LightweightM2M
Technical specification v1.0”, available online at
www.openmobilealliance.org.

[10] A

[11] 2016.

[12] T. Bhatia and R. Kaushal, "Malware detection in
android based on dynamic analysis," 2017 International
Conference on Cyber Security And Protection Of
Digital Services (Cyber Security), London, 2017, pp. 1-
6.

[13] S. Kandukuru and R. M. Sharma, "Android malicious a

gfhyhh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hhhhhhhh
gfhyhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh

http://www.openmobilealliance.org/

